A light scattering instrument for investigating cloud ice microcrystal morphology
نویسندگان
چکیده
We describe an optical scattering instrument designed to assess the shapes and sizes of microscopic atmospheric cloud particles, especially the smallest ice crystals that can profoundly affect cloud processes and radiative properties yet cannot be seen clearly using in situ cloud particle imaging probes. The new instrument captures high-resolution spatial light scattering patterns from individual particles down to ~1 μm in size passing through a laser beam. Its significance lies in the ability of these patterns to provide morphological data for particle sizes well below the optical resolution limits of current probes.
منابع مشابه
Classifying atmospheric ice crystals by spatial light scattering.
We describe preliminary results from an optical scattering instrument designed to assess the shapes and sizes of microscopic atmospheric cloud particles, especially the smallest ice crystals, that can profoundly affect cloud processes and radiative properties. The new instrument captures high-resolution spatial light scattering patterns from individual particles down to approximately 1 microm i...
متن کاملPolar nephelometer for light-scattering measurements of ice crystals.
We report on a small, lightweight polar nephelometer for the measurement of the light-scattering properties of cloud particles, specifically designed for use on a balloonborne platform in cirrus cloud conditions. The instrument consists of 33 fiber-optic light guides positioned in a two-dimensional plane from 5 degrees to 175 degrees that direct the scattered light to photodiode detectors-ampli...
متن کاملParticle Habit Imaging Using Incoherent Light: A First Step toward a Novel Instrument for Cloud Microphysics
The imaging unit of the novel cloud particle instrument Particle Habit Imaging and Polar Scattering (PHIPS) probe has been developed to image individual ice particles produced inside a large cloud chamber. The PHIPS produces images of single airborne ice crystals, illuminated with white light of an ultrafast flashlamp, which are captured at a maximum frequency of ;5 Hz by a charge-coupled devic...
متن کاملFirst correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe
Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous ...
متن کاملThe Growth and Morphology of Small Ice Crystals in a Diffusion Chamber
Small water ice crystals are the main component of cold tropospheric clouds such as cirrus. Because these clouds cover large areas of our planet, their role in the radiation budget of incoming and outgoing radiation to the planet’s surface is important. At present, the representation of these clouds in climate and weather models is subject to improvements: a large part of the uncertainty error ...
متن کامل